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Abstract. We present a density functional study of the expanded fee to condensed-fee transition
of a system of hard spheres with an additional short-range attractive Yukawa potential. The
approach rests on a separation of the interaction into a hard-sphere reference part, treated
nonperturbatively by means of the modified weighted-density approximation, and & mean-
fietd treatment of the attractive Yukawa tail, in analogy with earlier work on the short-range
square-well potential. The method confirms the existence of an fee-fec isostructucal transition
terminating at a critical point, and yields results for the critical temperature that are in very good
agreement with simulations.

While liquid—gas transitions of classical, spherically symmetric particle systems are well
understood topics of equilibrium statistical physics and solid-solid phase transitions
between solids possessing different crystal symmetries have also been extensively studied,
isostructural transitions between solids of the same crystal symmetry have only recently been
given special consideration. The motivation for the study of such transitions has been given
by the recent computer simulations of Bolhuis er af [1, 2]. These Monte Carlo simulations
predicted a novel type of isostructural foc—fec solid transition for systems characterized by
a hard sphere and with a very short-ranged attractive interaction.

The solid-solid coexistence curve for such systems (in the temperature-pressure plane)
terminates at a critical point and depends strongly on the range of the interparticle attraction.
The discovery of Bolhuis et o/ presented us with a new symmetry for the phase diagrams of
simple systems: for sufficiently long-ranged attractive potentials (larger than aproximately
one-third of the diameter o of the hard spheres) it shows one solid and two fluid phases; for
very short-range atractions (shorter than about 7% of ¢ for square-well potentials) there are
one fluid and two solid phases, while in the intermediate cases it consists only of a single
fluid and a single crystal phase.

While conducting computer simulations in the early eighties Young and Alder found
another type of fcc—fee transition [3]. The system studied in those simulations was hard
spheres (HS) with an attractive square-well potential of range & equal to one-half of the
HS diameter ¢ (/¢ = 0.5). The phase transition was induced in the crystal iattice by
the second nearest neighbours, whose distance from the central particle is +/2 times that of
the nearest neighbours. For an appropriate potential range, when only the first and second
neighbours interact with each other in a strongly localized solid (such as in the case of
d/c = 0.5), and the potential is steep enough, a solid-solid isostructural transition may
indeed occur. However, because there is no real potential steep enough at this distance to
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stabilize the solid in a more condensed state by means of the second-neighbour attraction,
this transition was considered to be an artefact of the steepness of the square-well potential
[2, 3). If the range of the square-well potential is even longer, allowing particles in the third,
fourth, etc, shells to interact, we may observe a whole spectrum of thermodynamicaly stable
isostructural solids with different densities coexisting with each other [4). However, this
is again merely an artefact due to the unrealistic steepness of the square-well potential-tail;
for smooth potentials, this transition does not occur.

On the other hand, short-ranged square-well potentials are not too unrealistic for colloidal
systems; for such potentials, the fee—fce transition observed in the simulations of Bolhuis
and Frenkel is caused mainly by the potential energy gain due to the direct interaction
between first neighbours in the condensed fec-solid. Unlike the Young—Alder transition,
this new solid-solid isostructural transition persists even if the sharp square-well potential
is substituted by a smoother one like a Yokawa tail [2], Le. it appears to be insensitive
to the particiuar form of the attractive potential, provided of course that it is sufficiently
short-ranged.

Considerable theoretical progress has already been made in the understanding of these
computer simulation results. On the basis of the very illustrative uncorrelated cell-model
[1, 2] the qualitative features of the phase diagram can be readily understood. Daanoun et al
[5] have presented 2 van der Waals theory for solids to manifest the symmetry of the fluid and
solid coexistence regions of the system and Tejero et ol [6, 7] have studied this systems by
means of a variational method based on the Gibbs-Bogoliubov inequality. Finally, succesful
density-functional treatments of the problem have recently been proposed for the HS plus
square-well interaction [8-10}. The strong physical motivation of this work is to test whether
the insensitivity of the phase diagram to the steepness of the attractive potential mentioned
above is reproduced by the simple mean-field density-functional approach presented earlier
for the square-well interaction [8]. In other words, we ask the question: does the simple
mean-field approximation which gives satisfactory results for the short-range square-well
potential continue to produce phase diagrams in reasonable agreement with simulation if
the attraction is repiaced by a smooth Yukawa form? As we show below, the answer is in
the affirmative, and in fact the results for the Yukawa interaction are in sofme respects even
better than those for the square-well.

Let us consider, therefore, an interparticle potential consisting of a repulsive hard-sphere
part and a short-ranged attractive Yukawa tail:
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where o is the hard core diameter, ¢ is the well depth (= > 0), and (xo)"' is a

measure for the range of the attraction. This potential can be written in a natural form
as v(r) = w(r) + ¢{r) where
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is the Yukawa attraction.

Our method for calculating the Helmholiz free energy of the fluid and solid phases of
such a system has been described elsewhere [8]. Here we briefly summarize the main points
of our approach and refer the reader to [8)] for details. Choosing the HS as the reference
interaction, we first approximate the Helmholtz free energy of the system by the standard
first-order perturbation theory expression [13]:

1
Flp(r)] = Folp(m] + 3 f f PP (vg; 7, PP (I — 7'|) dr dr'. 4)

In equation (4) above F and Fp denote the Helmoltz free energies of the full and reference
systems respectively, both being unigue functionals of the, generally position-dependent,
one-particle density p(r). Moreover, o (up; 7, ') stands for the two-particle density of
the reference system, itself a unique functional of the one-particle density. When the latter
is a position-independent constant, as is the case for uniform (homogeneous) fluids, the
functionals reduce to functions of the usual number density p = N/V of a system of N
particles enclosed in a prescribed volume V.
The two-particle density is usually written in the form

PP (v 7, 1) = p(Mp@)golr, ) (5)

which defines the pair distribution function gy of the reference sysiem. As the next step
of our approximation, we ignore the correlations in both phases, i.e. we replace the pair
distribution function gg by a step function:

(r.7) 0 lr—+l <o ©
Bt TI=1 [r =7 > 0.
Our final approximate expression for the Helmoltz free energy therefore reads:
1
Flp(r)l = Rlp()] + 3 [ pr)pt)p(r - ' ar dr’ ™

For the unmiform fluid (homogeneous phase) we adopt the very accurate Carnahan—
Starling equation of state [14] for the excess free energy of the reference system and thus
we obtain for the free energy density of a homogeneous system of number density o the
following expression:

BFuq(p)o?

v = flig(0)

6024 —3n) 2m(po /148 3
gy - ; ( D ) + 3po’ In(Afo)
(3

where n = wpo?/6 is the packing fraction, ¢ = kpT /¢ is the reduced temperature, & = ko,
and A is the thermal de Broglie wavelength.

For the calculation of the free energy of the crystalline solid (inhomogeneous phase) we
first adopt the Gaussian parametrization of the one-particle density having the prescribed
fce periodicity, namely

= po}(In(oe) — 1) +

32
p(r) = (5) > expl-a(r - R ©)
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where {R] is the set of fcc lattice vectors, and « is the localization parameter, with the
Gaussians becoming sharper as o grows. Separating the reference free energy into its ideal
and excess contributions,

Folp(r)] = f p()[In(o(r)A3) — 1]dr + Fur[p(r)] (10)

we can evaluate the excess part by inveking the modified weighted density approximation
{(MWDA} [11] which is known to give accurate results for the hard-sphere interaction.
The MWDA is based on a thermodynamic mapping of a solid of average density p and
localization « into a liquid at a weighted density p(p,c). The final expression for the
weighted density is given in the original MWDA paper [11]. Here, we simply point out
that the necessary input in order to perform such a mapping consists of the free energy per
particle of the uniform liquid, f5(5) and its direct correlation function (DCF) ¢®(r; 8). For
these two quantities of the HS fluid (which are related to each other by the compressibility
sum rule) we have two choices: we can adopt either the simpler Percus-Yevick (PY)
expression for the DCF [12] and the associated compressibility equation of state [11], or
the more accurate Verlet—Weis (VW) parametrization for the DCF [15, 16] which is by
construction consistent with the Carnahan—Starling equation of state [14].

We have performed the MWDA mapping using both alternative inputs. The advantage
of the PY input is that, since the DCF is short-range and has a palynomial form, and
the one-particle density was assumed to be described by a sum of Gaussians, the MWDA
iteration can be performed in reciprocal space for modest values of o (xo? < 100) and
we can then switch to real space for high values of the localization (see [9] for details).
The real space calculation is faster thar the original reciprocal space one [11] by orders
of magnitude, and also it allows us to examine solids of very high packing fractions (even
very near to the close-packing limit, pcpo® = +/2) and thus to consider values of £ up to
100. On the other hand, the VW DCF possesses a “tail’ outside the hard core, and analytic
expressions for this function are mere fits to the ‘real’ function which cannot be used as
approximations for ¢®(r} for hard spheres [16). Thus, when we use the VW input, we
are forced to perform the mapping in reciprocal space; but as o grows, we have to keep
more and more reciprocal lattice vectors (RLV) in order to guarantee the convergence of
the MWDA RLV sums. We have kept up to 1850 RLV shells in our calculation, sufficient
to guarantee convergence up to solid densities po® = 1.36. This restriction ailows us to
examine values of € only up to 40 with the VW input. We did not attempt to consider
even higher values, since the calculation would then become extremely demanding in time,
without offering any essentially new information.

The solid free energy is obtained as the minimum of the sum of ideal, excess and
internal energy terms with respect to ¢, and we obtain for this quantity the final expression:

F 3
PP _ 4o
1 a3
= ﬂ}j“{ﬂ“{ﬁfﬂ(r)[ln(p(r)ﬁ) —1]dr + f°(f"; )
+ : f[P{'")P(T')[ﬁfﬁ(l?“—r’])]drdr' +3 O'SIII(A/O') (]])
2N P

where fp stands for the free energy density of the hard-sphere fluid. The phase boundaries
are now located by performing the common-tangent construction on the fi(0)- and f5o(0)-
curves (equations (8) and (11)) with the last term in both being ignored as it does not affect
the solutions of the common-tangent equations.
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Figure 1. Phase diagrams of Yukawa systems obtained in the present approximation with PY
input for the MWDA. From right to left § = 100, 67, 50, 40, 33 and 25. For the last value of
£ the fec—fec transition is just preempted by melting.
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Figure 2. Phase diagrams of Yukawa systems obtained in the present approximation with VW
input for the MWDA. Solid lines: & = 40; dotted lines: & = 33; dashed lines: & = 25, For the
last value of £ the foo—fee transition is still not preempted by melting.

The resulting phase diagrams from a PY input for § = 25, 33, 40, 50, 67 and 100
are presented in figure 1. As can be seen, the insensitivity of the isosuwuctural transition
to the precise form of the attractive potential is well reproduced by our theory. In basic
agreement with the simulation results [2], the solid-solid transition is found to occur for
values & > 25 only; for £ = 25 and a longer range of the potential it is preempted by
melting. The asymmetric solid-solid density gap is wide at low temperatures and shrinks
to a point at criticality. As £ increases, the solid—solid coexistence curves shift to the right,
showing the same behaviour as the simulation results. The critical temperature is slightly
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overestimated by about 2% for £ = 25, by 3.3% for £ = 33 and the resulis are worsening as
the potential range decreases, but the difference between simulation and our simple theory
is less than 10% even for £ = 100 where it reaches its highest value.

The VW results for £ = 25, 33 and 40 are shown in figure 2. Again, an fece—fcc
transition is predicted. This result shows a transition for £ = 25 as well, which barely
‘survives’ the incipient melting transition. The approximation slightly underestimates the
critical temperatures, by 3.3% for § = 25 and by 1.7% for § = 33 but is quite satisfactory
otherwise.
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Figure 3. A comparison of the critical parameters (o 03, kpT,/2) cbtained from the present
theory with the simulation results, Squares: simulation results [2]; from right to left,
£ = 100, 67, 50, 40 and 33. Circles: present work with PY-input for the MWDA. From right to
left, & = 100, 67, 50, 40, 33 and 25, but for the last value the fee-fee transition is preempted,
Diamonds: present work with VW tnput for the MWDA, From right to left, £ = 40, 33 and 25.
The lines are just guides to the eye.

A more detailed comparison of the critical parameters, which allows for a few additional
remarks to be made, is shown in figure 3. Referring to this figure, we first point out that, as
in the case of square-well (SQW) potentials [8, 9], the critical densities are always in good
agreement with simulation, regardless of the type of approximation used (in our case always
within 19% of the simulation result). Still in analogy with the SQW case, the theory with
PY input predicts a higher value for the critical temperature (for given £) than the theory
with VW input used in the MWDA mapping. Moreover, even the highest discrepancy
for T, for PY input in the Yukawa case (~10% for & == 100) is a lot smaller than the
corresponding one for the SQW case (37%, see [9]). Unlike the SQW case, the VW-input
theory now underestimates the critical temperature. Such behaviour seems surprising at
first sight, since it is usually stated that a characteristic of mean-field-type theories is the
overestimation of critical temperatures. However, we should keep in mind that the validity
of this statement partly rests on the assumption that the reference part of the Hamiltonian can
be treated exactly. In our case, on the other hand, the HS part of the solid free energy is still
the result of an approximate calculation, namely the MWDA scheme, with the additional
approximation of a Gaussian density profile regardless of the values of the thermodynamic
and interaction parameters of the problem. Thus, the details of the interference of ermrors
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from the reference and mean-field terms in the Helmholtz free energy can bring about the
underestimation of the critical temperature observed here.

The feature in which the results from the present approach are in considerable
disagreement with the qualitative behaviour from simulations is the evolution of the critical
temperature with decreasing interaction range. Simulations show that T, decreases as &
grows and the theory predicts, wrongly, the opposite trend (see figure 3). A plausible
explanation of this effect is that the mean-field approximation employed here is getting
less accurate as the range of the potential decreases; thus, we have a systematic increase
of the error in the critical temperature as & grows, and this leads to the inaccurate result
mentioned above. However, we reiterate that the unavoidable inaccuracies in the treatment
of the reference part also play an important role in the predictions of our sifple theory on
the critical parameters, and so it is not possible to isolate the factors that cause the various
EITorS.

In our opinion, the most important result of this work is the fact that the simple mean-
field approach is in agreement with the ‘experimental’ finding that the existence of an
fce—fcc transition induced by the first neighbours is quite insensitive to the steepness of
the attractive potential; in view of this, it is now safe to assume that the same qualitative
features in the phase diagram will be observed if instead of a Yukawa attraction we uvse,
say, a power-law attraction ¢(r} ~ —r™", with n sufficiently large (n ~ 100). Moreover,
even quantitatively, the mean-field approximation gives results that agree reasonably well
with the simulation data. To improve the approach bevond mean-field, one can perform
a full nonperturbative mapping of the solid phases into uniform ones, in a way analogous
to that presented in [9] for square-well systems; indeed, the structural and thermodynamic
functions of the hard-core Yukawa fiuid are readily available in analytic form from the
mean-spherical approximation (MSA) solution of the model, and this makes the proposed
mapping fairly straightforward to implement.

We thank Peter Bolhuis for sending us the simulation results and for helpful discussions.
ZsTN thanks D PTW Marshall for fruitful discussions. CNL has been supported by the
Human Capital and Mobility Programme of the Commission of the European Communities,
Contract No ERBCHBICT940940.
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