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LETTER TO THE EDITOR 
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attractive Yukawa potentials 

2 s  T N6metht and C N Likost 
t Department of Physics, University of Vcszpr6m. PO Bax 158, H-8201 Veszprh, Hunzary 
$ Dipmimento di Fisica Teorica, Universitl di Trieste, Sbada Costiera 1 1 ,  1.34014 Grignano 
(TS). Italy 

Received IO August 1995 

Abstract. We present a density functional study of the expanded fcc to condensed-fcc transition 
of a system of hard spheres with an additional shorf-range amactive Yukawa potential. The 
appmach rests on a separation of the interaction into a hard-sphere reference pan, treated 
nonpermrbatively by means of the modified weighted-density approximation, and a mean- 
field veaunent of the attractive Yukawa tail, in analogy with earlier work on the shorf-range 
squawwell potentid. The method mnKm the existence of an fcc-fcc isostructural transition 
terminating at a critical point, and yields mulls for the critical temperature that are in very good 
agmment with simulations. 

While liquid-gas transitions of classical, spherically symmehic particle systems are well 
understood topics of equilibrium statistical physics and solid-solid phase transitions 
between solids possessing differenf crystal symmetries have also been extensively studied, 
isosfructurul transitions between solids of the same crystal symmeby have only recently been 
given special consideration. The motivation for the study of such transitions has been given 
by the recent computer simulations of Bolhuis et al [ I ,  21. These Monte Carlo simulations 
predicted a novel type of isostructural fcc-fcc solid transition for systems characterized by 
a hard sphere and with a very short-ranged attractive interaction. 

The solid-solid coexistence curve for such systems (in the temperature-pressure plane) 
terminates at a critical point and depends strongly on the range of the interparticle attraction. 
The discovery of Bolhuis et al presented us with a new symmetry for the phase dia-gams of 
simple systems: for sufficiently long-ranged attractive potentials (larger than aproximately 
one-thud of the diameter U of the hard spheres) it shows one solid and two fluid phases; for 
very short-range attractions (shorter than about 7% of U for square-well potentials) there are 
one fluid and two solid phases, while in the intermediate cases it consists only of a single 
fluid and a single crystal phase. 

While conducting computer simulations in the early eighties Young and Alder found 
another type of fcc-fcc transition [3]. The system studied in those simulations was hard 
spheres (HS) with an attractive square-well potential of range 6 equal to one-half of the 
HS diameter U @/U = 0.5). The phase transition was induced in the crystal lattice by 
the second nearest neighbours, whose distance from the central particle is & times that of 
the nearest neighbours. For an appropriate potential range, when only the first and second 
neighbours interact with each other in a strongly localized solid (such as in the case of 
B/u = OS), and the potential is steep enough, a solid-solid isostructural transition may 
indeed occur. However, because there is no real potential steep enough at this distance to 
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stabilize the solid in a more condensed state by means of the second-neighbour attraction, 
this transition was considered to be an artefact of the steepness of the square-well potential 
[2,3]. If the range of the square-well potential is even longer, allowing particles in the third, 
fourth, etc, shells to interact, we may observe a whole spectrum of thermodynamicaly stable 
isostructural solids with different densities coexisting with each other 141. However, this 
is again merely an artefact due to the unrealistic steepness of the square-well potential-tail; 
for smooth potentials, this transition does not occur. 

On the other hand, short-ranged square-well potentials are not too unrealistic for colloidal 
systems; for such potentials, the fcc-fcc transition observed in the simulations of Bolhuis 
and Frenkel is caused mainly by the potential energy gain due to the direct interaction 
between firsf neighbours in the condensed fcc-solid. Unlike the Young-Alder transition, 
this new solid-solid isostructural transition persists even if the sharp square-well potential 
is substituted by a smoother one like a Yukawa tail 121, i.e. it appears to be insensitive 
to the particluar form of the attractive potential, provided of course that it is sufficiently 
short-ranged. 

Considerable theoretical progress has already been made in the understanding of these 
computer simulation results. On the basis of the very illustrative uncorrelated cell-model 
[ 1,2] the qualitative features of the phase diagram can be readily understood. Daanoun et al 
[SI have presented a van der Waals theory for solids to manifest the symmetry of the fluid and 
solid coexistence regions of the system and Tejero et al [6,7]  have studied this systems by 
means of a variational method based on the Gibbs-Bogoliubov inequality. Finally, succesful 
density-functional treatments of the problem have recently been proposed for the HS plus 
square-well interaction IS-lo]. The strong physical motivation of this work is to test whether 
the insensitivity of the phase diagram to the steepness of the attractive potential mentioned 
above is reproduced by the simple mean-field density-functional approach presented earlier 
for the square-well interaction [8]. In other words, we ask the question: does the simple 
mean-field approximation which gives satisfactory results for the short-range square-well 
potential continue to produce phase diagrams in reasonable agreement with simulation if 
the attraction is replaced by a smooth Yukawa form? As we show below, the answer is in 
the affirmative, and in fact the results for the Yukawa interaction are in some respects even 
better than those for the square-well. 

Let us consider, therefore, an interparticle potential consisting of a repulsive hard-sphere 
part and a short-ranged attractive Yukawa tail: 

where cr is the hard core diameter, E is the well depth (E  > 0). and ( K U ) - '  is a 
measure for the range of the attraction. This potential can be written in  a natural form 
as u(r)  = uo(r) + + ( r )  where 

is the HS repulsion and 

1 0  r c u  
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is the Yukawa attraction. 
Our method for calculating the Helmholtz free energy of the fluid and solid phases of 

such a system has been described elsewhere [81. Here we briefly summarize the main points 
of our approach and refer the reader to [ S I  for details. Choosing the HS as the reference 
interaction, we first approximate the Helmholtz free energy of the system by the standard 
first-order perturbation theory expression [ 131: 

F [ P ( T ) ~  = F O [ P ( T ) ~ +  5 P ‘ ~ ’ ( U O ;  T, T ’ ) + ( ~ T  - T’l)dTdT‘. ( 4 )  ‘ S S  
In equation (4)  above F and Fo denote the Helmoltz free energies of the full and reference 
systems respectively, both being unique functionals of the, generally position-dependent, 
one-particle density p(r).  Moreover, p ‘ 2 ’ ( u ~ ;  T, T‘) stands for the two-particle density of 
the reference system, itself a unique functional of the one-particle density. When the latter 
is a position-independent constant, as is the case for uniform (homogeneous) fluids, the 
functionals reduce to functions of the usual number density p = N /  V of a system of N 
particles enclosed in a prescribed volume V. 

The two-particle density is usually written in the form 

p‘2’(vo; T, T‘) = p(T)P(T‘)go(T, T’) (5) 

which defines the pair distribution function go of the reference system. As the next step 
of our approximation, we ignore the correlations in both phases, i.e. we replace the pair 
distribution function go by a step function: 

Our final approximate expression for the Heho l t z  free energy therefore reads: 

For the uniform fluid (homogeneous phase) we adopt the very accurate Carnahan- 
Starling equation of state [I41 for the excess free energy of the reference system and thus 
we obtain for the free energy density of a homogeneous system of number density p the 
following expression: 

(8) 

where q = npo3/6 is the packing fraction, t = kaT/& is the reduced temperature, e K U ,  

and A is the thermal de Broglie wavelength. 
For the calculation of the free energy of the crystalline solid (inhomogeneous phase) we 

first adopt the Gaussian parametrization of the one-particle density having the prescribed 
fcc periodicity, namely 
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where (RI is the set of fcc lattice vectors, and (I is the localization parameter, with the 
Gaussians becoming sharper as (I grows. Separating the reference free energy into its ideal 
and excess contributions, 

FO[P(T)I = /p(r)[ln(p(v)A') - I ] d r  + F, , [P(~~I  (10) 

we can evaluate the excess part by invoking the modified weighted density approximation 
(MWDA) [ I l l  which is known to give accurate results for the hard-sphere interaction. 
The MWDA is based on a thermodynamic mapping of a solid of average density p and 
localization (Y into a liquid at a weighfed density j (p ,c r ) .  The final expression for the 
weighted density is given in the original MWDA paper [ 111. Here, we simply point out 
that the necessary input in order to perform such a mapping consists of the free energy per 
particle of the uniform liquid, fb(j) and its direct correlation function (DCF) c@)(i-; 5) .  For 
these two quantities of the HS Ruid (which are related to each other by the compressibility 
sum rule) we have two choices: we can adopt either the simpler Percus-Yevick (PY) 
expression for the DCF [I21 and the associated compressibility equation of state [ I l l ,  or 
the more accurate Verlet-Weis (VW) parametrization for the DCF [15, 161 which is by 
construction consistent with the CarnahanStarling equation of state [ 141. 

We have performed the MWDA mapping using both alternative inputs. The advantage 
of the PY input is that, since the DCF is short-range and has a polynomial form, and 
the one-particle density was assumed to be described by a sum of Gaussians, the MWDA 
iteration can be performed in reciprocal space for modest values of a ((YO' < 100) and 
we can then switch to real space for high values of the localization (see [9] for details). 
The real space calculation is faster than the original reciprocal space one [ I l l  by orders 
of magnitude, and also it allows us to examine solids of very high packing fractions (even 
very near to the close-packing limit, pcpu3 = A) and thus to consider values of ( up to 
100. On the other hand, the VW DCF possesses a 'tail' outside the hard core, and analytic 
expressions for this function are mere fits to the 'real' function which cannot be used as 
approximations for @ ( r )  for hard spheres [ 161. Thus. when we use the VW input, we 
are forced to perform the mapping in reciprocal space; but as (I grows, we have to keep 
more and more reciprocal lattice vectors (RLV) in order to guarantee the convergence of 
the MWDA RLV sums. We have kept up to 1850 RLV shells in our calculation, sufficient 
to guarantee convergence up to solid densifies pu3 = 1.36. This restriction allows us to 
examine values of 5 only up to 40 with the VW input. We did not attempt to consider 
even higher values, since the calculation would then become extremely demanding in time, 
without offering any essentially new information. 

The solid free energy is obtained as the minimum of the sum of ideal, excess and 
internal energy terms with respect to (I, and we obtain for this quantity the final expression: 

+i / / p ( r ) p ( ~ ' N N ( I v  - r r l ) l d r d r r  + 3pu3 In(A/u) 
2N I1 (I1) 

where fo stands for the free energy density of the hard-sphere Ruid. The phase boundaries 
are now located by performing the common-tangent conshuction on the hi,&)- and f,,~(p)- 
curves (equations (8) and (11)) with the last term in both being ignored as it does not affect 
the solutions of the common-tangent equations. 
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Figure 1. Phase diagramr of Yukawa systems obtained in the present approximation with PY 
input for the MWDA.  From right to lei? a = 100, 67, 50.40. 33 and 25. For the last value of 
5 the fcc-fcc transition is just preempted by melting. 
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Figure 2. Phase diagrams of Yukawa systems obtained in the present approximation with VW 
input for the MWDA. Solid lines: 5 = 40: dotted lines: 8 = 33; dashed lines: 5 = 25. For the 
last value of 5 the fcofcc lransition is still not preempted by melting. 

The resulting phase diagrams from a PY input for 5 = 25, 33, 40, 50, 67 and 100 
are presented in figure 1. As can be seen, the insensitivity of the isosrructural transition 
to the precise form of the ateactive potential is well reproduced by our theory. In basic 
agreement with the simulation results 121, the solid-solid transition is found to occur for 
values 5 z 25 only; for 5 = 25 and a longer range of the potential it is preempted by 
melting. The asymmetric solid-solid density gap is wide at low temperatures and shrinks 
to a point at criticality. As 5 increases, the solid-solid coexistence curves shift to the right, 
showing the same behaviour as the simulation results. The critical temperature is slightly 
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overestimated by about 2% for g = 25, by 3.3% f o r t  = 33 and the results are worsening as 
the potential range decreases, but the difference between simulation and our simple theory 
is less than 10% even for 

The VW results for 6 = 25, 33 and 40 are shown in figure 2. Again, an fcc-fcc 
transition is predicted. This result shows a transition for = 25 as well, which barely 
'survives' the incipient melting transition. The approximation slightly underestimates the 
critical temperatures, by 3.3% for 5 = 25 and by 1.7% for 6 = 33 but is quite satisfactory 
otherwise. 

= 100 where it reaches its highest value. 
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Figure 3. A compaison of the critical parameters  lo,^.", kaTc/&) obtained from the presenr 
theory with Ule simulation results. Squares: simulation results 121; from right lo I&, 
p = 100.61,50.40 md 33. Circles: present work with PY-input for the MWDA. From right to 
left, 6 = 100, 67. 50, 40, 33 and 25, bur for the lasr value the fcc-fcc transition is preempled. 
Diamonds: present work wilh VW input for he MWDA. From right to left. e = 40.33 and 25. 
The lines am just guides to the eye. 

A more detailed comparison of the critical parameters, which allows for a few additional 
remarks to be made, is shown in figure 3. Refemng to this figure, we first point out that, as 
in the case of square-well (SQW) potentials [8, 91, the critical densities are always in good 
agreement with simulation, regardless of the type of approximation used (in our case always 
within 1% of the simulation result). Still in analogy with the SQW case, the theory with 
PY input predicts a higher value for the critical temperature (for given 6) than the theory 
with VW input used in the MWDA mapping. Moreover, even the highest discrepancy 
for T, for PY input in the Yukawa case (-10% for 6 = 100) is a lot smaller than the 
corresponding one for the SQW case (37%, see [9]) .  Unlike the SQW case, the VW-input 
theory now underestimates the critical temperature. Such behaviour seems surprising at 
first sight, since it is usually stated that a characteristic of mean-field-type theories is the 
overestimation of critical temperatures. However, we should keep in mind that the validity 
of this statement partly rests on the assumption that the reference part of the Hamiltonian can 
be treated exactly. In our case, on the other hand, the HS part of the solid free energy is still 
the result of an approximate calculation, namely the MWDA scheme, with the additional 
approximatjon of a Gaussian density profile regardless of the values of the thermodynamic 
and interaction parameters of the problem. Thus, the details of the interference of errors 
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from the reference and mean-field terms in the Helmholtz free energy can bring about the 
underestimation of the critical temperature observed here. 

The feature in which the results from the present approach are in considerable 
disagreement with the qualitative behaviour from simulations is the evolution of the critical 
temperature with decreasing interaction range. Simulations show that T, decreases as 
grows and the theory predicts, wrongly, the opposite trend (see figure 3). A plausible 
explanation of this effect is that the mean-field approximation employed here is getting 
less accurate as the range of the potential decreases; thus, we have a systematic increase 
of the error in the critical temperature as f grows, and this leads to the inaccurate result 
mentioned above. However, we reiterate that the unavoidable inaccuracies in the treatment 
of the reference part also play an important role in the predictions of our simple theory on 
the critical parameters, and so it is not possible to isolate the factors that cause the various 
errors. 

In our opinion, the most important result of this work is the fact that the simple mean- 
field approach is in agreement with the 'experimental' finding that the existence of an 
fcofcc transition induced by the first neighbours is quite insensitive to the steepness of 
the attractive potential; in view of this, it is now safe to assume that the same qualitative 
features in the phase diagram will be observed if instead of a Yukawa attraction we use, 
say, a power-law attraction @(r)  - --I-", with n sufficiently large (n - 100). Moreover, 
even quantitatively, the mean-field approximation gives results that agree reasonably well 
with the simulation data. To improve the approach beyond mean-field, one can perform 
a full nonperturbative mapping of the solid phases into uniform ones, in a way analogous 
to that presented in [9] for square-well systems; indeed, the structural and thermodynamic 
functions of the hard-core Yukawa fluid are readily available in analytic form from the 
mean-spherical approximation (MSA) solution of the model, and this makes the proposed 
mapping fairly straightforward to implement. 

We thank Peter Bolhuis for sending us the simulation results and for helpful discussions. 
ZsTN thanks D PTW Marshall for Eruitful discussions. CNL has been supported by the 
Human Capital and Mobility Programme of the Commission of the European Communities, 
Contract No ERBCHBICT940940. 
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